Repository logo
 

Polyglutamine tracts regulate beclin 1-dependent autophagy

Accepted version
Peer-reviewed

Type

Article

Change log

Authors

Ashkenazi, A 
Bento, CF 
Ricketts, T 
Vicinanza, M 

Abstract

Nine neurodegenerative diseases are caused by expanded polyglutamine (polyQ) tracts in different proteins, such as huntingtin in Huntington's disease and ataxin 3 in spinocerebellar ataxia type 3 (SCA3). Age at onset of disease decreases with increasing polyglutamine length in these proteins and the normal length also varies. PolyQ expansions drive pathogenesis in these diseases, as isolated polyQ tracts are toxic, and an N-terminal huntingtin fragment comprising exon 1, which occurs in vivo as a result of alternative splicing, causes toxicity. Although such mutant proteins are prone to aggregation, toxicity is also associated with soluble forms of the proteins. The function of the polyQ tracts in many normal cytoplasmic proteins is unclear. One such protein is the deubiquitinating enzyme ataxin 3 (refs 7, 8), which is widely expressed in the brain. Here we show that the polyQ domain enables wild-type ataxin 3 to interact with beclin 1, a key initiator of autophagy. This interaction allows the deubiquitinase activity of ataxin 3 to protect beclin 1 from proteasome-mediated degradation and thereby enables autophagy. Starvation-induced autophagy, which is regulated by beclin 1, was particularly inhibited in ataxin-3-depleted human cell lines and mouse primary neurons, and in vivo in mice. This activity of ataxin 3 and its polyQ-mediated interaction with beclin 1 was competed for by other soluble proteins with polyQ tracts in a length-dependent fashion. This competition resulted in impairment of starvation-induced autophagy in cells expressing mutant huntingtin exon 1, and this impairment was recapitulated in the brains of a mouse model of Huntington's disease and in cells from patients. A similar phenomenon was also seen with other polyQ disease proteins, including mutant ataxin 3 itself. Our data thus describe a specific function for a wild-type polyQ tract that is abrogated by a competing longer polyQ mutation in a disease protein, and identify a deleterious function of such mutations distinct from their propensity to aggregate.

Description

Keywords

macroautophagy, neurodegeneration, mechanisms of disease, deubiquitylating enzymes

Journal Title

Nature

Conference Name

Journal ISSN

0028-0836
1476-4687

Volume Title

545

Publisher

Nature Publishing Group
Sponsorship
Wellcome Trust (095317/Z/11/Z)
Cambridge University Hospitals NHS Foundation Trust (CUH) (RG50822)
Federation of the European Biochemical Societies (FEBS) (unknown)
Wellcome Trust (100140/Z/12/Z)
Wellcome Trust (095317/Z/11/A)
We thank the Wellcome Trust (Principal Research Fellowship to D.C.R. (095317/Z/11/Z), Wellcome Trust Strategic Grant to Cambridge Institute for Medical Research (100140/Z/12/Z)), National Institute for Health Research Biomedical Research Centre at Addenbrooke’s Hospital, and Addenbrooke’s Charitable Trust and Federation of European Biochemical Societies (FEBS Long-Term Fellowship to A.A.) for funding; R. Antrobus for mass spectrometry analysis; S. Luo for truncated HTT constructs; M. Jimenez-Sanchez and C. Karabiyik for assistance with the primary mouse cell cultures; and J. Lim and Z. Ignatova for reagents.