Repository logo
 

Emergence of a turbulent cascade in a quantum gas.

Accepted version
Peer-reviewed

Loading...
Thumbnail Image

Change log

Abstract

A central concept in the modern understanding of turbulence is the existence of cascades of excitations from large to small length scales, or vice versa. This concept was introduced in 1941 by Kolmogorov and Obukhov, and such cascades have since been observed in various systems, including interplanetary plasmas, supernovae, ocean waves and financial markets. Despite much progress, a quantitative understanding of turbulence remains a challenge, owing to the interplay between many length scales that makes theoretical simulations of realistic experimental conditions difficult. Here we observe the emergence of a turbulent cascade in a weakly interacting homogeneous Bose gas-a quantum fluid that can be theoretically described on all relevant length scales. We prepare a Bose-Einstein condensate in an optical box, drive it out of equilibrium with an oscillating force that pumps energy into the system at the largest length scale, study its nonlinear response to the periodic drive, and observe a gradual development of a cascade characterized by an isotropic power-law distribution in momentum space. We numerically model our experiments using the Gross-Pitaevskii equation and find excellent agreement with the measurements. Our experiments establish the uniform Bose gas as a promising new medium for investigating many aspects of turbulence, including the interplay between vortex and wave turbulence, and the relative importance of quantum and classical effects.

Description

Journal Title

Nature

Conference Name

Journal ISSN

0028-0836
1476-4687

Volume Title

539

Publisher

Springer Science and Business Media LLC

Rights and licensing

Except where otherwised noted, this item's license is described as All rights reserved
Sponsorship
European Research Council (682285)
Engineering and Physical Sciences Research Council (EP/N011759/1)
European Office of Aerospace Research and Development (EOARD) (W911NF-15-1-0444)
The Royal Society (uf110236)
This work was supported by AFOSR, ARO, DARPA OLE, EPSRC (Grant No. EP/N011759/1) and ERC (QBox). The GeForce GTX TITAN X used for the numerical simulations was donated by the NVIDIA Corporation. N.N. and A.L.G. acknowledge support from Trinity College, Cambridge; R.P.S. acknowledges support from the Royal Society.