From the artificial atom to the Kondo-Anderson model: Orientation-dependent magnetophotoluminescence of charged excitons in InAs quantum dots
Authors
Van, Hattem Barbara
Corfdir, Pierre
Brereton, Peter
Graham, Alexandra
Stanley, Megan
Hugues, Maxime
Hopkinson, Mark
Publication Date
2013-05Series
87
205308
ISSN
1098-0121
Publisher
American Physical Society
Type
Article
Metadata
Show full item recordCitation
Van, H. B., Corfdir, P., Brereton, P., Pearce, P., Graham, A., Stanley, M., Hugues, M., et al. (2013). From the artificial atom to the Kondo-Anderson model: Orientation-dependent magnetophotoluminescence of charged excitons in InAs quantum dots. http://prb.aps.org/abstract/PRB/v87/i20/e205308
Abstract
We present a magnetophotoluminescence study on neutral and charged excitons confined to InAs/GaAs quantum dots. Our investigation relies on a confocal microscope that allows arbitrary tuning of the angle between the applied magnetic field and the sample growth axis. First, from experiments on neutral excitons and trions, we extract the in-plane and on-axis components of the Landé tensor for electrons and holes in the s shell. Then, based on the doubly negatively charged exciton magnetophotoluminescence, we show that the p-electron wave function spreads significantly into the GaAs barriers. We also demonstrate that the p-electron g factor depends on the presence of a hole in the s shell. The magnetic field dependence of triply negatively charged excitons photoluminescence exhibits several anticrossings, as a result of coupling between the quantum dot electronic states and the wetting layer. Finally, we discuss how the system evolves from a Kondo-Anderson exciton description to the artificial atom model when the orientation of the magnetic field goes from Faraday to Voigt geometry.
Keywords
quantum dot, magnetic field, charged exciton
Sponsorship
We acknowledge funding from the EPSRC. B.V.H. also thanks the Hitachi Cambridge Laboratory for additional fund- ing. P.C. acknowledges financial support from the European Union Seventh Framework Programme under Grant agreement No. 265073.
Funder references
EPSRC (EP/C009290/1)
EC FP7 MC ITN (265073)
Identifiers
External link: http://prb.aps.org/abstract/PRB/v87/i20/e205308
This record's URL: http://www.dspace.cam.ac.uk/handle/1810/244658
Rights
Licence:
http://www.rioxx.net/licenses/all-rights-reserved