Repository logo
 

Anomalous Spectral Shift of Near- and Far-Field Plasmonic Resonances in Nanogaps.

Published version
Peer-reviewed

Repository DOI


Change log

Authors

Lombardi, Anna 
Demetriadou, Angela 
Andrae, Patrick 
Benz, Felix 

Abstract

The near-field and far-field spectral response of plasmonic systems are often assumed to be identical, due to the lack of methods that can directly compare and correlate both responses under similar environmental conditions. We develop a widely tunable optical technique to probe the near-field resonances within individual plasmonic nanostructures that can be directly compared to the corresponding far-field response. In tightly coupled nanoparticle-on-mirror constructs with nanometer-sized gaps we find >40 meV blue-shifts of the near-field compared to the dark-field scattering peak, which agrees with full electromagnetic simulations. Using a transformation optics approach, we show such shifts arise from the different spectral interference between different gap modes in the near- and far-field. The control and tuning of near-field and far-field responses demonstrated here is of paramount importance in the design of optical nanostructures for field-enhanced spectroscopy, as well as to control near-field activity monitored through the far-field of nano-optical devices.

Description

Keywords

SERS, nanoparticle on mirror, plasmonics, sensing, ultrafast tunable lasers

Journal Title

ACS Photonics

Conference Name

Journal ISSN

2330-4022
2330-4022

Volume Title

3

Publisher

American Chemical Society (ACS)
Sponsorship
Engineering and Physical Sciences Research Council (EP/G060649/1)
Engineering and Physical Sciences Research Council (EP/L027151/1)
European Research Council (320503)
Engineering and Physical Sciences Research Council (EP/H007024/1)
Engineering and Physical Sciences Research Council (EP/G037221/1)
We acknowledge financial support from EPSRC grants EP/G060649/1, EP/L027151/1, EP/G037221/1, EPSRC NanoDTC, and ERC grant LINASS 320503. J.A. acknowledges support from project FIS2013-41184-P from Spanish MINECO and project NANOGUNE'14 from the Dept. of Industry of the Basque Country. F.B. acknowledges support from the Winton Programme for the Physics of Sustainability. R.C. acknowledges financial support from St. John's College, Cambridge for Dr. Manmohan Singh Scholarship. P.A. acknowledges funding from the Helmholtz Association for the Young Investigator group VH-NG-928 within the Initiative and Networking fund. We thank Laurynas Pukenas and Steve Evans (University of Leeds, UK) for support with the ellipsometry measurements