Stochastic approximation cut algorithm for inference in modularized Bayesian models
Publication Date
2021-12-06Journal Title
Statistics and Computing
ISSN
0960-3174
Publisher
Springer US
Volume
32
Issue
1
Language
en
Type
Article
This Version
VoR
Metadata
Show full item recordCitation
Liu, Y., & Goudie, R. J. B. (2021). Stochastic approximation cut algorithm for inference in modularized Bayesian models. Statistics and Computing, 32 (1) https://doi.org/10.1007/s11222-021-10070-2
Abstract
Abstract: Bayesian modelling enables us to accommodate complex forms of data and make a comprehensive inference, but the effect of partial misspecification of the model is a concern. One approach in this setting is to modularize the model and prevent feedback from suspect modules, using a cut model. After observing data, this leads to the cut distribution which normally does not have a closed form. Previous studies have proposed algorithms to sample from this distribution, but these algorithms have unclear theoretical convergence properties. To address this, we propose a new algorithm called the stochastic approximation cut (SACut) algorithm as an alternative. The algorithm is divided into two parallel chains. The main chain targets an approximation to the cut distribution; the auxiliary chain is used to form an adaptive proposal distribution for the main chain. We prove convergence of the samples drawn by the proposed algorithm and present the exact limit. Although SACut is biased, since the main chain does not target the exact cut distribution, we prove this bias can be reduced geometrically by increasing a user-chosen tuning parameter. In addition, parallel computing can be easily adopted for SACut, which greatly reduces computation time.
Keywords
Article, Cutting feedback, Stochastic approximation Monte Carlo, Intractable normalizing functions, Discretization
Sponsorship
Cambridge Commonwealth, European and International Trust (Cambridge International Scholarship)
UK Medical Research Council (MC_UU_00002/2)
Identifiers
s11222-021-10070-2, 10070
External DOI: https://doi.org/10.1007/s11222-021-10070-2
This record's URL: https://www.repository.cam.ac.uk/handle/1810/331785
Rights
Licence:
http://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk