Measurement of the muon-neutrino charged-current single charged-pion cross-section on argon with the MicroBooNE detector
View / Open Files
Authors
Smith, Andrew
Advisors
Uchida, Melissa
Date
2021-08-23Awarding Institution
University of Cambridge
Qualification
Doctor of Philosophy (PhD)
Type
Thesis
Metadata
Show full item recordCitation
Smith, A. (2021). Measurement of the muon-neutrino charged-current single charged-pion cross-section on argon with the MicroBooNE detector (Doctoral thesis). https://doi.org/10.17863/CAM.82946
Abstract
Several important questions remain open in the field of neutrino oscillation physics, including the possibility of CP-violation in the lepton sector, the ordering of the neutrino mass states and the possible existence of sterile neutrinos. At present, the ability to answer these questions is limited by uncertainties on neutrino-nucleus interaction cross-section models. Consequently, it is
key that these uncertainties are constrained by precise cross-section measurements made using experimental data. The MicroBooNE experiment utilises a 90-tonne active mass Liquid Argon Time Projection Chamber to image neutrino interactions at the millimetre scale and is ideally suited to measure complex neutrino-argon interactions.
This thesis presents a measurement of the muon-neutrino charged-current single charged pion (CC1π± ) cross-section on argon using data from MicroBooNE in the Fermilab Booster Neutrino Beam. The total flux-integrated forward-folded cross-section is found to be [22.4 ± 0.9 (stat.) ± 5.2 (syst.)] × 10 −41 cm 2, with an efficiency of [18.8 ± 1.3]% and is consistent with the prediction of the GENIE generator. Additionally, the world’s first measurement of the proton-exclusive CC1π ± cross-section is performed with a 300 MeV c−1 proton momentum threshold. Finally, the differential cross-section is extracted with respect to the muon and pion momenta and directions. The pion momentum measurement on argon is also the first to be made.
To facilitate these measurements, the Pandora pattern recognition software is employed to identify and reconstruct particle trajectories in MicroBooNE data. A key stage of this process is the identification and removal of cosmic-rays that form the main background to all analyses of neutrino interactions. The approach presented in this thesis is capable of removing 46% of such backgrounds at the cost of only 1.7% of neutrino-induced activity.
Keywords
Neutrino, Cross section, Physics, MicroBooNE, Charged current single charged pion, CC1Pi
Sponsorship
Science and Technology Facilities Council (1805208)
Embargo Lift Date
2023-03-30
Identifiers
This record's DOI: https://doi.org/10.17863/CAM.82946
Rights
Attribution 4.0 International (CC BY 4.0)
Licence URL: https://creativecommons.org/licenses/by/4.0/
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk