From Platform to Knowledge Graph: Evolution of Laboratory Automation.
Publication Date
2022-02-28Journal Title
JACS Au
ISSN
2691-3704
Publisher
American Chemical Society (ACS)
Type
Article
This Version
AM
Later Version(s)
Metadata
Show full item recordCitation
Bai, J., Cao, L., Mosbach, S., Akroyd, J., Lapkin, A., & Kraft, M. (2022). From Platform to Knowledge Graph: Evolution of Laboratory Automation.. JACS Au https://doi.org/10.1021/jacsau.1c00438
Abstract
High-fidelity computer-aided experimentation is becoming more accessible with the development of computing power and artificial intelligence tools. The advancement of experimental hardware also empowers researchers to reach a level of accuracy that was not possible in the past. Marching toward the next generation of self-driving laboratories, the orchestration of both resources lies at the focal point of autonomous discovery in chemical science. To achieve such a goal, algorithmically accessible data representations and standardized communication protocols are indispensable. In this perspective, we recategorize the recently introduced approach based on Materials Acceleration Platforms into five functional components and discuss recent case studies that focus on the data representation and exchange scheme between different components. Emerging technologies for interoperable data representation and multi-agent systems are also discussed with their recent applications in chemical automation. We hypothesize that knowledge graph technology, orchestrating semantic web technologies and multi-agent systems, will be the driving force to bring data to knowledge, evolving our way of automating the laboratory.
Sponsorship
This research was supported by the National Research Foundation, Prime Minister’s Office, Singapore under its Campus for Research Excellence and Technological Enterprise (CREATE) programme, and Pharma Innovation Platform Singapore (PIPS) via grant to CARES Ltd “Data2Knowledge, C12”. The authors are grateful to EPSRC (grant number: EP/R029369/1) and ARCHER for financial and computational support as a part of their funding to the UK Consortium on Turbulent Reacting Flows (www.ukctrf.com). This work was co-funded by EPSRC (grant number: EP/R009902/1) “Combining Chemical Robotics and Statistical Methods to Discover Complex Functional Products”. The authors thank Dr Jacob W. Martin for his advice on information management. The authors thank Dr Andrew C. Breeson for his help with proofreading. The authors thank Yiqun Bian and Guanhua Li for their helpful recommendations and feedback on colour scheme, which helped to improve the overall aesthetic expression of the TOC graphic. J. Bai acknowledges financial support provided by CSC Cambridge International Scholarship from Cambridge Trust and China Scholarship Council. M. Kraft gratefully acknowledges the support of the Alexander von Humboldt Foundation.
Funder references
Engineering and Physical Sciences Research Council (EP/R029369/1)
Engineering and Physical Sciences Research Council (EP/R009902/1)
Identifiers
External DOI: https://doi.org/10.1021/jacsau.1c00438
This record's URL: https://www.repository.cam.ac.uk/handle/1810/331936
Statistics
Total file downloads (since January 2020). For more information on metrics see the
IRUS guide.
Recommended or similar items
The current recommendation prototype on the Apollo Repository will be turned off on 03 February 2023. Although the pilot has been fruitful for both parties, the service provider IKVA is focusing on horizon scanning products and so the recommender service can no longer be supported. We recognise the importance of recommender services in supporting research discovery and are evaluating offerings from other service providers. If you would like to offer feedback on this decision please contact us on: support@repository.cam.ac.uk